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PURPOSE: DERIVE ANALYTIC RESULTS FOR CEMM VERIFICATION TASKS

EXTENDED-MHD EFFECTS ON THE TEARING MODE:

TWO-FLUID HALL (DOES NOT REQUIRE DENSITY OR TEMPERATURE EQUI-

LIBRIUM GRADIENTS).

TWO-FLUID DIAMAGNETIC (WITH INDEPENDENT DENSITY, ION TEMPER-

ATURE AND ELECTRON TEMPERATURE EQUILIBRIUM GRADIENTS).

PARALLEL CLOSURES (p‖ − p⊥ AND q‖).



BASIC TWO-FLUID SYSTEM, NEGLECTING PARALLEL CLOSURES:
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The resistivity, η, will be taken as constant and the ion gyroviscous stress tensor and

the diamagnetic perpendicular heat fluxes are:
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EQUILIBRIUM WITH FLOW IN ONE-DIMENSIONAL SLAB GEOMETRY:

n0 = n0(x)

pι0 = pι0(x)

pe0 = pe0(x)

u0 = u0(x) = u0y(x)ey + u0z(x)ez,

B0 = B0(x) = B0y(x)ey + B0z(x)ez,

j0 = j0(x) = −B′
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TWO-FLUID TEARING MODES IN THE ABSENCE OF EQUILIBRIUM FLOW

AND DENSITY OR TEMPERATURE GRADIENTS:

Consider the simplest case of a static equilibrium (u0 = 0) with constant n0, pe0 and pι0.

From equilibrium force balance, the magnitude of the magnetic field B0 is constant too.

No diamagnetic effects, only the two-fluid Hall effect retained.

Sheet pinch equilibrium magnetic field profile:

B0y(x) = B∞
0y tanh(

x

L
) ,

B0z(x) = [B2
0 − B2
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Linear stability analysis for perturbed quantities independent of z and periodic in y:

Q(x, t) = Q0(x) + Q1(x) exp(iky + γt) .



DIMENSIONLESS PARAMETERS OF THE PROBLEM:
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to be treated as arbitrary.
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which is the basic expansion parameter.
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which is the eigenvalue of the problem.
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to be treated as arbitrary, ranging from the single-fluid limit kdι → 0 to kdι = O(1).



kL,

whose allowed range will be such that the normalized instability index,

∆̃′(kL) =
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is positive and comparable to or less than unity. Only the limit ∆̃′(kL) 	 1 is excluded.
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,

which will be required to satisfy ε2/5
η � β ≤ 1. Thus the present analysis excludes

the very low or zero beta limits, but covers the regime of interest for magnetic fusion

plasmas. Within this range of applicability, and for ∆̃′(kL) <∼ 1, our dispersion relation

is independent of β.



HALL-TEARING DISPERSION RELATION:

Under the above applicability conditions:
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where f is the function of a single variable
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having the asymptotic behaviors f (w) → 1 for w � 1 and f (w) → w−1/2 for w 	 1.



This expression defines implicitly a normalized growth rate of the form:

ε̃γ = F (ε̃η, kdι)

or

εγ = ∆̃′2 F (εη∆̃
′−2, kdι) ,

where F is a function of two variables with the asymptotic behaviors

F (v, w) → v3/5 for w � v1/5 and F (v, w) → v1/2w1/2 for w 	 v1/5.

Thus,
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ANALYTICAL DISPERSION RELATION

0.1
0.01

1



OUTER REGION NORMAL MODES



INNER REGION NORNAL MODES
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Two well-separated inner regions 

for                         (blue case):

1) Innermost resistive layer, kd1

2) Intermediate layer, kd2



BETA EFFECTS
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(no β effects)
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β affects only the arc 
between red and green points


	poster_figures.pdf
	ANALYTICAL DISPERSION RELATION
	OUTER REGION NORMAL MODES
	INNER REGION NORNAL MODES
	BETA EFFECTS
	




